MakeItFrom.com
Menu (ESC)

C66900 Brass vs. Grade 31 Titanium

C66900 brass belongs to the copper alloys classification, while grade 31 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is grade 31 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.1 to 26
20
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 45
41
Shear Strength, MPa 290 to 440
320
Tensile Strength: Ultimate (UTS), MPa 460 to 770
510
Tensile Strength: Yield (Proof), MPa 330 to 760
450

Thermal Properties

Latent Heat of Fusion, J/g 190
420
Maximum Temperature: Mechanical, °C 150
320
Melting Completion (Liquidus), °C 860
1660
Melting Onset (Solidus), °C 850
1610
Specific Heat Capacity, J/kg-K 400
540
Thermal Expansion, µm/m-K 20
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.8
6.9

Otherwise Unclassified Properties

Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 2.8
36
Embodied Energy, MJ/kg 46
600
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
99
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
940
Stiffness to Weight: Axial, points 8.1
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 15 to 26
32
Strength to Weight: Bending, points 16 to 23
32
Thermal Shock Resistance, points 14 to 23
39

Alloy Composition

Carbon (C), % 0
0 to 0.080
Cobalt (Co), % 0
0.2 to 0.8
Copper (Cu), % 62.5 to 64.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.040 to 0.080
Titanium (Ti), % 0
97.9 to 99.76
Zinc (Zn), % 22.5 to 26
0
Residuals, % 0
0 to 0.4