MakeItFrom.com
Menu (ESC)

C66900 Brass vs. S44401 Stainless Steel

C66900 brass belongs to the copper alloys classification, while S44401 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C66900 brass and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 26
21
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 45
78
Shear Strength, MPa 290 to 440
300
Tensile Strength: Ultimate (UTS), MPa 460 to 770
480
Tensile Strength: Yield (Proof), MPa 330 to 760
300

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 150
930
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 46
40
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 200
90
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2450
230
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 26
17
Strength to Weight: Bending, points 16 to 23
18
Thermal Shock Resistance, points 14 to 23
17

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 62.5 to 64.5
0
Iron (Fe), % 0 to 0.25
75.1 to 80.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 11.5 to 12.5
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 22.5 to 26
0
Residuals, % 0 to 0.2
0