MakeItFrom.com
Menu (ESC)

C67000 Bronze vs. Grade 5 Titanium

C67000 bronze belongs to the copper alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C67000 bronze and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 5.6 to 11
8.6 to 11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 42
40
Shear Strength, MPa 390 to 510
600 to 710
Tensile Strength: Ultimate (UTS), MPa 660 to 880
1000 to 1190
Tensile Strength: Yield (Proof), MPa 350 to 540
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 160
330
Melting Completion (Liquidus), °C 900
1610
Melting Onset (Solidus), °C 850
1650
Specific Heat Capacity, J/kg-K 410
560
Thermal Conductivity, W/m-K 99
6.8
Thermal Expansion, µm/m-K 20
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 2.9
38
Embodied Energy, MJ/kg 49
610
Embodied Water, L/kg 350
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 62
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1290
3980 to 5880
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 23 to 31
62 to 75
Strength to Weight: Bending, points 21 to 26
50 to 56
Thermal Diffusivity, mm2/s 30
2.7
Thermal Shock Resistance, points 21 to 29
76 to 91

Alloy Composition

Aluminum (Al), % 3.0 to 6.0
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 63 to 68
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 2.0 to 4.0
0 to 0.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 21.8 to 32.5
0
Residuals, % 0
0 to 0.4