MakeItFrom.com
Menu (ESC)

C67400 Bronze vs. EN 1.4865 Stainless Steel

C67400 bronze belongs to the copper alloys classification, while EN 1.4865 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C67400 bronze and the bottom bar is EN 1.4865 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22 to 28
6.8
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 480 to 610
470
Tensile Strength: Yield (Proof), MPa 250 to 370
250

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 130
1020
Melting Completion (Liquidus), °C 890
1380
Melting Onset (Solidus), °C 870
1330
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
33
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.8
5.8
Embodied Energy, MJ/kg 48
81
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
27
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 660
160
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17 to 22
16
Strength to Weight: Bending, points 17 to 20
17
Thermal Diffusivity, mm2/s 32
3.1
Thermal Shock Resistance, points 16 to 20
11

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0 to 0.35
34.4 to 44.7
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 2.0 to 3.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
36 to 39
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.1 to 40
0
Residuals, % 0 to 0.5
0