MakeItFrom.com
Menu (ESC)

C68400 Brass vs. Grade 23 Titanium

C68400 brass belongs to the copper alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 18
6.7 to 11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 41
40
Shear Strength, MPa 330
540 to 570
Tensile Strength: Ultimate (UTS), MPa 540
930 to 940
Tensile Strength: Yield (Proof), MPa 310
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 130
340
Melting Completion (Liquidus), °C 840
1610
Melting Onset (Solidus), °C 820
1560
Specific Heat Capacity, J/kg-K 400
560
Thermal Conductivity, W/m-K 66
7.1
Thermal Expansion, µm/m-K 20
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 2.7
38
Embodied Energy, MJ/kg 47
610
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 460
3430 to 3560
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 19
58 to 59
Strength to Weight: Bending, points 19
48
Thermal Diffusivity, mm2/s 21
2.9
Thermal Shock Resistance, points 18
67 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.5
5.5 to 6.5
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 59 to 64
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 1.0
0 to 0.25
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0.030 to 0.3
0
Silicon (Si), % 1.5 to 2.5
0
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0
0 to 0.4