MakeItFrom.com
Menu (ESC)

C69710 Brass vs. EN 1.4470 Stainless Steel

C69710 brass belongs to the copper alloys classification, while EN 1.4470 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is EN 1.4470 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
23
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
80
Tensile Strength: Ultimate (UTS), MPa 470
680
Tensile Strength: Yield (Proof), MPa 230
480

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 160
1060
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
18
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
17
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 44
49
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
140
Resilience: Unit (Modulus of Resilience), kJ/m3 250
570
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 12
4.8
Thermal Shock Resistance, points 16
18

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
63.7 to 71.9
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0