MakeItFrom.com
Menu (ESC)

C70260 Copper vs. EN 1.4982 Stainless Steel

C70260 copper belongs to the copper alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.5 to 19
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 320 to 450
490
Tensile Strength: Ultimate (UTS), MPa 520 to 760
750
Tensile Strength: Yield (Proof), MPa 410 to 650
570

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 1060
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
22
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.9
Embodied Energy, MJ/kg 43
71
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
190
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
830
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 24
27
Strength to Weight: Bending, points 16 to 21
23
Thermal Diffusivity, mm2/s 45
3.4
Thermal Shock Resistance, points 18 to 27
17

Alloy Composition

Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 95.8 to 98.8
0
Iron (Fe), % 0
61.8 to 69.7
Manganese (Mn), % 0
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 1.0 to 3.0
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.2 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.15 to 0.4
Residuals, % 0 to 0.5
0