MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. Grade 9 Titanium

C70700 copper-nickel belongs to the copper alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 39
11 to 17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 46
40
Shear Strength, MPa 220
430 to 580
Tensile Strength: Ultimate (UTS), MPa 320
700 to 960
Tensile Strength: Yield (Proof), MPa 110
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 220
410
Maximum Temperature: Mechanical, °C 220
330
Melting Completion (Liquidus), °C 1120
1640
Melting Onset (Solidus), °C 1060
1590
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 59
8.1
Thermal Expansion, µm/m-K 16
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 34
37
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 3.4
36
Embodied Energy, MJ/kg 52
580
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 51
1380 to 3220
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 10
43 to 60
Strength to Weight: Bending, points 12
39 to 48
Thermal Diffusivity, mm2/s 17
3.3
Thermal Shock Resistance, points 12
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 88.5 to 90.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.25
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 9.5 to 10.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4