MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. S44401 Stainless Steel

C70700 copper-nickel belongs to the copper alloys classification, while S44401 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 39
21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
78
Shear Strength, MPa 220
300
Tensile Strength: Ultimate (UTS), MPa 320
480
Tensile Strength: Yield (Proof), MPa 110
300

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
930
Melting Completion (Liquidus), °C 1120
1460
Melting Onset (Solidus), °C 1060
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 59
22
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.9
Embodied Energy, MJ/kg 52
40
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
90
Resilience: Unit (Modulus of Resilience), kJ/m3 51
230
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10
17
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 17
5.9
Thermal Shock Resistance, points 12
17

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 88.5 to 90.5
0
Iron (Fe), % 0 to 0.050
75.1 to 80.6
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 9.5 to 10.5
0 to 1.0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Residuals, % 0 to 0.5
0