MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. Grade 23 Titanium

C72900 copper-nickel belongs to the copper alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 6.0 to 20
6.7 to 11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 45
40
Shear Strength, MPa 540 to 630
540 to 570
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
930 to 940
Tensile Strength: Yield (Proof), MPa 700 to 920
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 210
340
Melting Completion (Liquidus), °C 1120
1610
Melting Onset (Solidus), °C 950
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 29
7.1
Thermal Expansion, µm/m-K 17
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 39
36
Density, g/cm3 8.8
4.4
Embodied Carbon, kg CO2/kg material 4.6
38
Embodied Energy, MJ/kg 72
610
Embodied Water, L/kg 360
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
3430 to 3560
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 27 to 34
58 to 59
Strength to Weight: Bending, points 23 to 27
48
Thermal Diffusivity, mm2/s 8.6
2.9
Thermal Shock Resistance, points 31 to 38
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 74.1 to 78
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 14.5 to 15.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Tin (Sn), % 7.5 to 8.5
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4