MakeItFrom.com
Menu (ESC)

C72900 Copper-nickel vs. SAE-AISI 1090 Steel

C72900 copper-nickel belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C72900 copper-nickel and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 20
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
72
Shear Strength, MPa 540 to 630
470 to 570
Tensile Strength: Ultimate (UTS), MPa 870 to 1080
790 to 950
Tensile Strength: Yield (Proof), MPa 700 to 920
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1120
1450
Melting Onset (Solidus), °C 950
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 29
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 39
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 4.6
1.4
Embodied Energy, MJ/kg 72
19
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 210
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 2030 to 3490
730 to 1000
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 27 to 34
28 to 34
Strength to Weight: Bending, points 23 to 27
24 to 27
Thermal Diffusivity, mm2/s 8.6
13
Thermal Shock Resistance, points 31 to 38
25 to 31

Alloy Composition

Carbon (C), % 0
0.85 to 1.0
Copper (Cu), % 74.1 to 78
0
Iron (Fe), % 0 to 0.5
98 to 98.6
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.3
0.6 to 0.9
Nickel (Ni), % 14.5 to 15.5
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0