MakeItFrom.com
Menu (ESC)

C81400 Copper vs. AISI 416 Stainless Steel

C81400 copper belongs to the copper alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
13 to 31
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 370
510 to 800
Tensile Strength: Yield (Proof), MPa 250
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
680
Melting Completion (Liquidus), °C 1090
1530
Melting Onset (Solidus), °C 1070
1480
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
30
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 61
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 45
27
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 260
220 to 940
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
18 to 29
Strength to Weight: Bending, points 13
18 to 25
Thermal Diffusivity, mm2/s 75
8.1
Thermal Shock Resistance, points 13
19 to 30

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.6 to 1.0
12 to 14
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
83.2 to 87.9
Manganese (Mn), % 0
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Residuals, % 0 to 0.5
0