MakeItFrom.com
Menu (ESC)

C82000 Copper vs. CR019A Copper

Both C82000 copper and CR019A copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C82000 copper and the bottom bar is CR019A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.0 to 20
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
43
Tensile Strength: Ultimate (UTS), MPa 350 to 690
220
Tensile Strength: Yield (Proof), MPa 140 to 520
130

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1090
1090
Melting Onset (Solidus), °C 970
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
390
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
100
Electrical Conductivity: Equal Weight (Specific), % IACS 46
100

Otherwise Unclassified Properties

Base Metal Price, % relative 60
35
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 5.0
2.7
Embodied Energy, MJ/kg 77
42
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
29
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
76
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11 to 22
6.8
Strength to Weight: Bending, points 12 to 20
9.0
Thermal Diffusivity, mm2/s 76
110
Thermal Shock Resistance, points 12 to 24
7.8

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0.45 to 0.8
0
Bismuth (Bi), % 0
0 to 0.00050
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
99.874 to 99.92
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0 to 0.15
0
Silver (Ag), % 0
0.080 to 0.12
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0