MakeItFrom.com
Menu (ESC)

C82000 Copper vs. Grade 23 Titanium

C82000 copper belongs to the copper alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C82000 copper and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 20
6.7 to 11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 350 to 690
930 to 940
Tensile Strength: Yield (Proof), MPa 140 to 520
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 220
410
Maximum Temperature: Mechanical, °C 220
340
Melting Completion (Liquidus), °C 1090
1610
Melting Onset (Solidus), °C 970
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 260
7.1
Thermal Expansion, µm/m-K 17
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 60
36
Density, g/cm3 8.9
4.4
Embodied Carbon, kg CO2/kg material 5.0
38
Embodied Energy, MJ/kg 77
610
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51 to 55
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 80 to 1120
3430 to 3560
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 11 to 22
58 to 59
Strength to Weight: Bending, points 12 to 20
48
Thermal Diffusivity, mm2/s 76
2.9
Thermal Shock Resistance, points 12 to 24
67 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.1
5.5 to 6.5
Beryllium (Be), % 0.45 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 2.2 to 2.7
0
Copper (Cu), % 95.2 to 97.4
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.1
0 to 0.25
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0 to 0.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4