MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C90400 Bronze

Both C82400 copper and C90400 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
24
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
41
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
310
Tensile Strength: Yield (Proof), MPa 260 to 970
180

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 270
170
Melting Completion (Liquidus), °C 1000
990
Melting Onset (Solidus), °C 900
850
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 130
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
12
Electrical Conductivity: Equal Weight (Specific), % IACS 26
12

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 8.9
3.5
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
65
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
150
Stiffness to Weight: Axial, points 7.6
7.0
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
10
Strength to Weight: Bending, points 16 to 26
12
Thermal Diffusivity, mm2/s 39
23
Thermal Shock Resistance, points 17 to 36
11

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Beryllium (Be), % 1.6 to 1.9
0
Boron (B), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
86 to 89
Iron (Fe), % 0 to 0.2
0 to 0.4
Lead (Pb), % 0 to 0.020
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0 to 0.1
7.5 to 8.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7