MakeItFrom.com
Menu (ESC)

C82700 Copper vs. SAE-AISI 1090 Steel

C82700 copper belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
11
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 1200
790 to 950
Tensile Strength: Yield (Proof), MPa 1020
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 240
240
Maximum Temperature: Mechanical, °C 300
400
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.2

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 180
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
730 to 1000
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
28 to 34
Strength to Weight: Bending, points 29
24 to 27
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 41
25 to 31

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.85 to 1.0
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
98 to 98.6
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 1.0 to 1.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0