MakeItFrom.com
Menu (ESC)

C82700 Copper vs. S44401 Stainless Steel

C82700 copper belongs to the copper alloys classification, while S44401 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
78
Tensile Strength: Ultimate (UTS), MPa 1200
480
Tensile Strength: Yield (Proof), MPa 1020
300

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 300
930
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
2.9
Embodied Energy, MJ/kg 180
40
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
90
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
230
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 39
5.9
Thermal Shock Resistance, points 41
17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.090
17.5 to 19.5
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
75.1 to 80.6
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 1.0 to 1.5
0 to 1.0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0