MakeItFrom.com
Menu (ESC)

C82800 Copper vs. AISI 416 Stainless Steel

C82800 copper belongs to the copper alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
13 to 31
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
510 to 800
Tensile Strength: Yield (Proof), MPa 380 to 1000
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 310
680
Melting Completion (Liquidus), °C 930
1530
Melting Onset (Solidus), °C 890
1480
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 19
3.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
1.9
Embodied Energy, MJ/kg 190
27
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
220 to 940
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
18 to 29
Strength to Weight: Bending, points 20 to 28
18 to 25
Thermal Diffusivity, mm2/s 36
8.1
Thermal Shock Resistance, points 23 to 39
19 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
12 to 14
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
83.2 to 87.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.3
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0