MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 1.4301 Stainless Steel

C82800 copper belongs to the copper alloys classification, while EN 1.4301 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 1.4301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
14 to 46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
610 to 900
Tensile Strength: Yield (Proof), MPa 380 to 1000
220 to 570

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 310
940
Melting Completion (Liquidus), °C 930
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
3.0
Embodied Energy, MJ/kg 190
43
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
110 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
120 to 820
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
22 to 32
Strength to Weight: Bending, points 20 to 28
20 to 27
Thermal Diffusivity, mm2/s 36
4.0
Thermal Shock Resistance, points 23 to 39
14 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
17.5 to 19.5
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
66.8 to 74.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.2
8.0 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0

Comparable Variants