MakeItFrom.com
Menu (ESC)

C82800 Copper vs. S15700 Stainless Steel

C82800 copper belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
1.1 to 29
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
1180 to 1890
Tensile Strength: Yield (Proof), MPa 380 to 1000
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 310
870
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
3.4
Embodied Energy, MJ/kg 190
47
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
640 to 4660
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
42 to 67
Strength to Weight: Bending, points 20 to 28
32 to 43
Thermal Diffusivity, mm2/s 36
4.2
Thermal Shock Resistance, points 23 to 39
39 to 63

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.75 to 1.5
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.1
14 to 16
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
69.6 to 76.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0