MakeItFrom.com
Menu (ESC)

C84500 Brass vs. C61400 Bronze

Both C84500 brass and C61400 bronze are copper alloys. They have 79% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 28
34 to 40
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 39
43
Tensile Strength: Ultimate (UTS), MPa 240
540 to 570
Tensile Strength: Yield (Proof), MPa 97
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 180
220
Maximum Temperature: Mechanical, °C 150
220
Melting Completion (Liquidus), °C 980
1050
Melting Onset (Solidus), °C 840
1040
Specific Heat Capacity, J/kg-K 360
420
Thermal Conductivity, W/m-K 72
67
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
14
Electrical Conductivity: Equal Weight (Specific), % IACS 17
15

Otherwise Unclassified Properties

Base Metal Price, % relative 28
28
Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 2.9
3.0
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 340
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
160 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 45
210 to 310
Stiffness to Weight: Axial, points 6.6
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.7
18 to 19
Strength to Weight: Bending, points 9.8
17 to 18
Thermal Diffusivity, mm2/s 23
19
Thermal Shock Resistance, points 8.6
18 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
6.0 to 8.0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 77 to 79
86 to 92.5
Iron (Fe), % 0 to 0.4
1.5 to 3.5
Lead (Pb), % 6.0 to 7.5
0 to 0.010
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
0 to 1.0
Residuals, % 0
0 to 0.5