MakeItFrom.com
Menu (ESC)

C85800 Brass vs. Grade 23 Titanium

C85800 brass belongs to the copper alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 15
6.7 to 11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 380
930 to 940
Tensile Strength: Yield (Proof), MPa 210
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
340
Melting Completion (Liquidus), °C 900
1610
Melting Onset (Solidus), °C 870
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 84
7.1
Thermal Expansion, µm/m-K 20
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.0
4.4
Embodied Carbon, kg CO2/kg material 2.8
38
Embodied Energy, MJ/kg 47
610
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 210
3430 to 3560
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 13
58 to 59
Strength to Weight: Bending, points 15
48
Thermal Diffusivity, mm2/s 27
2.9
Thermal Shock Resistance, points 13
67 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.55
5.5 to 6.5
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 57 to 69
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 31 to 41
0
Residuals, % 0
0 to 0.4