MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4301 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4301 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
14 to 46
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 850
610 to 900
Tensile Strength: Yield (Proof), MPa 480
220 to 570

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 160
940
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 35
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.0
Embodied Energy, MJ/kg 51
43
Embodied Water, L/kg 360
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
120 to 820
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 30
22 to 32
Strength to Weight: Bending, points 25
20 to 27
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 28
14 to 20

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 60 to 66
0
Iron (Fe), % 2.0 to 4.0
66.8 to 74.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 2.0
Nickel (Ni), % 0 to 1.0
8.0 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0