MakeItFrom.com
Menu (ESC)

C86300 Bronze vs. EN 1.4584 Stainless Steel

C86300 bronze belongs to the copper alloys classification, while EN 1.4584 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C86300 bronze and the bottom bar is EN 1.4584 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
150
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 850
500
Tensile Strength: Yield (Proof), MPa 480
210

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 420
460
Thermal Conductivity, W/m-K 35
17
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.0
5.7
Embodied Energy, MJ/kg 51
78
Embodied Water, L/kg 360
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
110
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 30
17
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 11
4.5
Thermal Shock Resistance, points 28
12

Alloy Composition

Aluminum (Al), % 5.0 to 7.5
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 60 to 66
1.0 to 3.0
Iron (Fe), % 2.0 to 4.0
41.7 to 52
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 1.0
24 to 26
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 22 to 28
0
Residuals, % 0 to 1.0
0