MakeItFrom.com
Menu (ESC)

C87500 Brass vs. ACI-ASTM CK3MCuN Steel

C87500 brass belongs to the copper alloys classification, while ACI-ASTM CK3MCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87500 brass and the bottom bar is ACI-ASTM CK3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 460
620
Tensile Strength: Yield (Proof), MPa 190
290

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1350
Specific Heat Capacity, J/kg-K 410
460
Thermal Conductivity, W/m-K 28
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
29
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.6
Embodied Energy, MJ/kg 44
76
Embodied Water, L/kg 300
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
200
Resilience: Unit (Modulus of Resilience), kJ/m3 160
210
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 8.3
3.2
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 79 to 85
0.5 to 1.0
Iron (Fe), % 0
49.5 to 56.3
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 19.5
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 3.0 to 5.0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0