MakeItFrom.com
Menu (ESC)

C87600 Bronze vs. SAE-AISI 1090 Steel

C87600 bronze belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C87600 bronze and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
11
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 470
790 to 950
Tensile Strength: Yield (Proof), MPa 230
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 970
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.4
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 240
730 to 1000
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
28 to 34
Strength to Weight: Bending, points 16
24 to 27
Thermal Diffusivity, mm2/s 8.1
13
Thermal Shock Resistance, points 17
25 to 31

Alloy Composition

Carbon (C), % 0
0.85 to 1.0
Copper (Cu), % 88 to 92.5
0
Iron (Fe), % 0
98 to 98.6
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.5 to 5.5
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 4.0 to 7.0
0
Residuals, % 0 to 0.5
0