MakeItFrom.com
Menu (ESC)

C87800 Brass vs. EN 1.4724 Stainless Steel

C87800 brass belongs to the copper alloys classification, while EN 1.4724 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C87800 brass and the bottom bar is EN 1.4724 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
16
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 590
550
Tensile Strength: Yield (Proof), MPa 350
280

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 170
850
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 820
1390
Specific Heat Capacity, J/kg-K 410
490
Thermal Conductivity, W/m-K 28
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 27
7.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 44
28
Embodied Water, L/kg 300
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
73
Resilience: Unit (Modulus of Resilience), kJ/m3 540
210
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 8.3
5.6
Thermal Shock Resistance, points 21
19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.7 to 1.2
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 80 to 84.2
0
Iron (Fe), % 0 to 0.15
82.2 to 86.6
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 3.8 to 4.2
0.7 to 1.4
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 12 to 16
0
Residuals, % 0 to 0.5
0