MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. N08332 Stainless Steel

C90200 bronze belongs to the copper alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
170
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 260
520
Tensile Strength: Yield (Proof), MPa 110
210

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1050
Melting Completion (Liquidus), °C 1050
1390
Melting Onset (Solidus), °C 880
1340
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 62
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
32
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.3
5.4
Embodied Energy, MJ/kg 53
77
Embodied Water, L/kg 370
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
140
Resilience: Unit (Modulus of Resilience), kJ/m3 55
110
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
18
Strength to Weight: Bending, points 10
18
Thermal Diffusivity, mm2/s 19
3.1
Thermal Shock Resistance, points 9.5
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 91 to 94
0 to 1.0
Iron (Fe), % 0 to 0.2
38.3 to 48.2
Lead (Pb), % 0 to 0.3
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.5
34 to 37
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
0.75 to 1.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0 to 0.025
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0