MakeItFrom.com
Menu (ESC)

C90200 Bronze vs. S44401 Stainless Steel

C90200 bronze belongs to the copper alloys classification, while S44401 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90200 bronze and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 260
480
Tensile Strength: Yield (Proof), MPa 110
300

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
930
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 62
22
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.9
Embodied Energy, MJ/kg 53
40
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
90
Resilience: Unit (Modulus of Resilience), kJ/m3 55
230
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
17
Strength to Weight: Bending, points 10
18
Thermal Diffusivity, mm2/s 19
5.9
Thermal Shock Resistance, points 9.5
17

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 91 to 94
0
Iron (Fe), % 0 to 0.2
75.1 to 80.6
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 0.5
0 to 1.0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.6
0