MakeItFrom.com
Menu (ESC)

C90400 Bronze vs. AISI 314 Stainless Steel

C90400 bronze belongs to the copper alloys classification, while AISI 314 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C90400 bronze and the bottom bar is AISI 314 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 24
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 310
590
Tensile Strength: Yield (Proof), MPa 180
230

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 990
1380
Melting Onset (Solidus), °C 850
1340
Specific Heat Capacity, J/kg-K 370
490
Thermal Conductivity, W/m-K 75
15
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
25
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.5
4.3
Embodied Energy, MJ/kg 56
62
Embodied Water, L/kg 370
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
210
Resilience: Unit (Modulus of Resilience), kJ/m3 150
130
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
21
Strength to Weight: Bending, points 12
20
Thermal Diffusivity, mm2/s 23
3.9
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.4
46.7 to 56.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 2.0
Nickel (Ni), % 0 to 1.0
19 to 22
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.0050
1.5 to 3.0
Sulfur (S), % 0.1 to 0.65
0 to 0.030
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 1.0 to 5.0
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0