MakeItFrom.com
Menu (ESC)

C90400 Bronze vs. ASTM A588 Steel

C90400 bronze belongs to the copper alloys classification, while ASTM A588 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C90400 bronze and the bottom bar is ASTM A588 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 24
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 310
550
Tensile Strength: Yield (Proof), MPa 180
390

Thermal Properties

Latent Heat of Fusion, J/g 190
250 to 260
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 990
1460
Melting Onset (Solidus), °C 850
1410 to 1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
43 to 44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.3 to 2.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.5 to 1.6
Embodied Energy, MJ/kg 56
20 to 22
Embodied Water, L/kg 370
50 to 51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
400
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
20
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 23
12
Thermal Shock Resistance, points 11
16