MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. 3104 Aluminum

C92200 bronze belongs to the copper alloys classification, while 3104 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C92200 bronze and the bottom bar is 3104 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 25
1.1 to 20
Fatigue Strength, MPa 76
74 to 130
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 280
170 to 310
Tensile Strength: Yield (Proof), MPa 140
68 to 270

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 990
650
Melting Onset (Solidus), °C 830
600
Specific Heat Capacity, J/kg-K 370
900
Thermal Conductivity, W/m-K 70
160
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
41
Electrical Conductivity: Equal Weight (Specific), % IACS 14
130

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 3.2
8.4
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 360
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
1.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 87
34 to 540
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 8.9
17 to 31
Strength to Weight: Bending, points 11
25 to 37
Thermal Diffusivity, mm2/s 21
64
Thermal Shock Resistance, points 9.9
7.6 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
95.1 to 98.4
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 86 to 90
0.050 to 0.25
Gallium (Ga), % 0
0 to 0.050
Iron (Fe), % 0 to 0.25
0 to 0.8
Lead (Pb), % 1.0 to 2.0
0
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0
0.8 to 1.4
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.6
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 3.0 to 5.0
0 to 0.25
Residuals, % 0
0 to 0.15