MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. C99400 Brass

Both C93400 bronze and C99400 brass are copper alloys. They have 85% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is C99400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Poisson's Ratio 0.35
0.34
Shear Modulus, GPa 38
44
Tensile Strength: Ultimate (UTS), MPa 270
460 to 550
Tensile Strength: Yield (Proof), MPa 150
230 to 370

Thermal Properties

Latent Heat of Fusion, J/g 180
230
Maximum Temperature: Mechanical, °C 150
200
Melting Completion (Liquidus), °C 950
1070
Melting Onset (Solidus), °C 850
1020
Specific Heat Capacity, J/kg-K 350
400
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
17
Electrical Conductivity: Equal Weight (Specific), % IACS 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 32
30
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 54
45
Embodied Water, L/kg 380
310

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 120
230 to 590
Stiffness to Weight: Axial, points 6.3
7.5
Stiffness to Weight: Bending, points 17
19
Strength to Weight: Axial, points 8.3
15 to 17
Strength to Weight: Bending, points 10
15 to 17
Thermal Shock Resistance, points 10
16 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.5 to 2.0
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 82 to 85
83.5 to 96.5
Iron (Fe), % 0 to 0.2
1.0 to 3.0
Lead (Pb), % 7.0 to 9.0
0 to 0.25
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
1.0 to 3.5
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0.5 to 2.0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0.5 to 5.0
Residuals, % 0
0 to 0.3