MakeItFrom.com
Menu (ESC)

C93600 Bronze vs. S21640 Stainless Steel

C93600 bronze belongs to the copper alloys classification, while S21640 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93600 bronze and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
200
Elongation at Break, % 14
46
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 36
78
Tensile Strength: Ultimate (UTS), MPa 260
740
Tensile Strength: Yield (Proof), MPa 140
350

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 150
940
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 840
1380
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 49
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
17
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 3.2
3.6
Embodied Energy, MJ/kg 51
51
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
280
Resilience: Unit (Modulus of Resilience), kJ/m3 98
300
Stiffness to Weight: Axial, points 6.1
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 7.9
27
Strength to Weight: Bending, points 9.9
23
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 9.8
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.55
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 79 to 83
0
Iron (Fe), % 0 to 0.2
63 to 74.3
Lead (Pb), % 11 to 13
0
Manganese (Mn), % 0
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0 to 1.0
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0 to 1.5
0 to 0.060
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.7
0