MakeItFrom.com
Menu (ESC)

C94700 Bronze vs. EN 1.4563 Stainless Steel

C94700 bronze belongs to the copper alloys classification, while EN 1.4563 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C94700 bronze and the bottom bar is EN 1.4563 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.9 to 32
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 350 to 590
620
Tensile Strength: Yield (Proof), MPa 160 to 400
250

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 54
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
36
Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 3.5
6.3
Embodied Energy, MJ/kg 56
87
Embodied Water, L/kg 350
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 89
200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 700
150
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 19
21
Strength to Weight: Bending, points 13 to 18
20
Thermal Diffusivity, mm2/s 16
3.2
Thermal Shock Resistance, points 12 to 21
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 85 to 90
0.7 to 1.5
Iron (Fe), % 0 to 0.25
31.6 to 40.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 4.5 to 6.0
30 to 32
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0