MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. SAE-AISI 1090 Steel

C95200 bronze belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
220 to 280
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 520
790 to 950
Tensile Strength: Yield (Proof), MPa 190
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 230
240
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 50
50
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 50
19
Embodied Water, L/kg 380
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 170
730 to 1000
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
28 to 34
Strength to Weight: Bending, points 17
24 to 27
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 19
25 to 31

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0.85 to 1.0
Copper (Cu), % 86 to 89
0
Iron (Fe), % 2.5 to 4.0
98 to 98.6
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 1.0
0