MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. N08332 Stainless Steel

C95400 bronze belongs to the copper alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 200
170
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.1 to 16
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 600 to 710
520
Tensile Strength: Yield (Proof), MPa 240 to 360
210

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
1050
Melting Completion (Liquidus), °C 1040
1390
Melting Onset (Solidus), °C 1030
1340
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 27
32
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 3.2
5.4
Embodied Energy, MJ/kg 53
77
Embodied Water, L/kg 390
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
140
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
110
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 20 to 24
18
Strength to Weight: Bending, points 19 to 22
18
Thermal Diffusivity, mm2/s 16
3.1
Thermal Shock Resistance, points 21 to 25
12

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 83 to 87
0 to 1.0
Iron (Fe), % 3.0 to 5.0
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 1.5
34 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Residuals, % 0 to 0.5
0