MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. Grade 25 Titanium

C96300 copper-nickel belongs to the copper alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
110
Elongation at Break, % 11
11
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 49
40
Tensile Strength: Ultimate (UTS), MPa 580
1000
Tensile Strength: Yield (Proof), MPa 430
940

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 240
340
Melting Completion (Liquidus), °C 1200
1610
Melting Onset (Solidus), °C 1150
1560
Specific Heat Capacity, J/kg-K 400
560
Thermal Conductivity, W/m-K 37
7.1
Thermal Expansion, µm/m-K 16
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.1
43
Embodied Energy, MJ/kg 76
700
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
110
Resilience: Unit (Modulus of Resilience), kJ/m3 720
4220
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 18
62
Strength to Weight: Bending, points 17
50
Thermal Diffusivity, mm2/s 10
2.8
Thermal Shock Resistance, points 20
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.15
0 to 0.080
Copper (Cu), % 72.3 to 80.8
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0.5 to 1.5
0 to 0.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0
Nickel (Ni), % 18 to 22
0.3 to 0.8
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4