MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. S44401 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while S44401 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 49
78
Tensile Strength: Ultimate (UTS), MPa 580
480
Tensile Strength: Yield (Proof), MPa 430
300

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 240
930
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
22
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 42
12
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
2.9
Embodied Energy, MJ/kg 76
40
Embodied Water, L/kg 290
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
90
Resilience: Unit (Modulus of Resilience), kJ/m3 720
230
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 10
5.9
Thermal Shock Resistance, points 20
17

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
75.1 to 80.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 18 to 22
0 to 1.0
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Residuals, % 0 to 0.5
0