MakeItFrom.com
Menu (ESC)

C96900 Copper-nickel vs. EN 1.4028 Stainless Steel

C96900 copper-nickel belongs to the copper alloys classification, while EN 1.4028 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96900 copper-nickel and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.5
11 to 17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 850
660 to 930
Tensile Strength: Yield (Proof), MPa 830
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 210
760
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 960
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 39
7.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 4.6
1.9
Embodied Energy, MJ/kg 72
27
Embodied Water, L/kg 360
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 2820
380 to 1360
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 27
24 to 33
Strength to Weight: Bending, points 23
22 to 27
Thermal Shock Resistance, points 30
23 to 32

Alloy Composition

Carbon (C), % 0
0.26 to 0.35
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 73.6 to 78
0
Iron (Fe), % 0 to 0.5
83.1 to 87.7
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0.050 to 0.3
0 to 1.5
Nickel (Ni), % 14.5 to 15.5
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 7.5 to 8.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0