MakeItFrom.com
Menu (ESC)

C99300 Copper vs. SAE-AISI 9310 Steel

C99300 copper belongs to the copper alloys classification, while SAE-AISI 9310 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C99300 copper and the bottom bar is SAE-AISI 9310 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
540 to 610
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0
17 to 19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 660
820 to 910
Tensile Strength: Yield (Proof), MPa 380
450 to 570

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 250
440
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 43
48
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 35
4.4
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 4.5
1.8
Embodied Energy, MJ/kg 70
24
Embodied Water, L/kg 400
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
120 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 590
540 to 860
Stiffness to Weight: Axial, points 8.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
29 to 32
Strength to Weight: Bending, points 20
25 to 27
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 22
24 to 27

Alloy Composition

Aluminum (Al), % 10.7 to 11.5
0
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0
1.0 to 1.4
Cobalt (Co), % 1.0 to 2.0
0
Copper (Cu), % 68.6 to 74.4
0
Iron (Fe), % 0.4 to 1.0
93.8 to 95.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.45 to 0.65
Molybdenum (Mo), % 0
0.080 to 0.15
Nickel (Ni), % 13.5 to 16.5
3.0 to 3.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.020
0.2 to 0.35
Sulfur (S), % 0
0 to 0.012
Tin (Sn), % 0 to 0.050
0
Residuals, % 0 to 0.3
0