MakeItFrom.com
Menu (ESC)

C99400 Brass vs. S17600 Stainless Steel

C99400 brass belongs to the copper alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C99400 brass and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 460 to 550
940 to 1490
Tensile Strength: Yield (Proof), MPa 230 to 370
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 590
850 to 4390
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 17
34 to 54
Strength to Weight: Bending, points 15 to 17
28 to 37
Thermal Shock Resistance, points 16 to 19
31 to 50

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 83.5 to 96.5
0
Iron (Fe), % 1.0 to 3.0
71.3 to 77.6
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 1.0 to 3.5
6.0 to 7.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 2.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.4 to 1.2
Zinc (Zn), % 0.5 to 5.0
0
Residuals, % 0 to 0.3
0