MakeItFrom.com
Menu (ESC)

C99400 Brass vs. S44800 Stainless Steel

C99400 brass belongs to the copper alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C99400 brass and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
82
Tensile Strength: Ultimate (UTS), MPa 460 to 550
590
Tensile Strength: Yield (Proof), MPa 230 to 370
450

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 17
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.8
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 590
480
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 17
21
Strength to Weight: Bending, points 15 to 17
20
Thermal Shock Resistance, points 16 to 19
19

Alloy Composition

Aluminum (Al), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 83.5 to 96.5
0 to 0.15
Iron (Fe), % 1.0 to 3.0
62.6 to 66.5
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0 to 0.5
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 1.0 to 3.5
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 2.0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0.5 to 5.0
0
Residuals, % 0 to 0.3
0