MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. C90400 Bronze

N06007 nickel belongs to the nickel alloys classification, while C90400 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06007 nickel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
24
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 690
310
Tensile Strength: Yield (Proof), MPa 260
180

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1340
990
Melting Onset (Solidus), °C 1260
850
Specific Heat Capacity, J/kg-K 450
370
Thermal Conductivity, W/m-K 10
75
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 60
34
Density, g/cm3 8.4
8.7
Embodied Carbon, kg CO2/kg material 10
3.5
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 260
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
65
Resilience: Unit (Modulus of Resilience), kJ/m3 170
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
10
Strength to Weight: Bending, points 21
12
Thermal Diffusivity, mm2/s 2.7
23
Thermal Shock Resistance, points 18
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
86 to 89
Iron (Fe), % 18 to 21
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 1.0 to 2.0
0 to 0.010
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0 to 1.0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7