MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. C11600 Copper

N06025 nickel belongs to the nickel alloys classification, while C11600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06025 nickel and the bottom bar is C11600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 32
2.7 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 500
160 to 240
Tensile Strength: Ultimate (UTS), MPa 760
230 to 410
Tensile Strength: Yield (Proof), MPa 310
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1350
1080
Melting Onset (Solidus), °C 1300
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 11
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
100
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 50
35
Density, g/cm3 8.2
9.0
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 120
42
Embodied Water, L/kg 290
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
9.7 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 240
25 to 710
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
7.2 to 13
Strength to Weight: Bending, points 22
9.4 to 14
Thermal Diffusivity, mm2/s 2.9
110
Thermal Shock Resistance, points 21
8.2 to 15

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
99.78 to 99.915
Iron (Fe), % 8.0 to 11
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 59.2 to 65.9
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Silver (Ag), % 0
0.085 to 0.12
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0
Residuals, % 0
0 to 0.1