MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. Grade 9 Titanium

N06035 nickel belongs to the nickel alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06035 nickel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
11 to 17
Fatigue Strength, MPa 200
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 84
40
Shear Strength, MPa 440
430 to 580
Tensile Strength: Ultimate (UTS), MPa 660
700 to 960
Tensile Strength: Yield (Proof), MPa 270
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 340
410
Maximum Temperature: Mechanical, °C 1030
330
Melting Completion (Liquidus), °C 1440
1640
Melting Onset (Solidus), °C 1390
1590
Specific Heat Capacity, J/kg-K 450
550
Thermal Expansion, µm/m-K 13
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 60
37
Density, g/cm3 8.4
4.5
Embodied Carbon, kg CO2/kg material 10
36
Embodied Energy, MJ/kg 140
580
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 22
43 to 60
Strength to Weight: Bending, points 20
39 to 48
Thermal Shock Resistance, points 17
52 to 71

Alloy Composition

Aluminum (Al), % 0 to 0.4
2.5 to 3.5
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 32.3 to 34.3
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 2.0
0 to 0.25
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 7.6 to 9.0
0
Nickel (Ni), % 51.1 to 60.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
92.6 to 95.5
Tungsten (W), % 0 to 0.6
0
Vanadium (V), % 0 to 0.2
2.0 to 3.0
Residuals, % 0
0 to 0.4