MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. Grade 9 Titanium

N06045 nickel belongs to the nickel alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06045 nickel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 37
11 to 17
Fatigue Strength, MPa 210
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 470
430 to 580
Tensile Strength: Ultimate (UTS), MPa 690
700 to 960
Tensile Strength: Yield (Proof), MPa 270
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 350
410
Maximum Temperature: Mechanical, °C 1010
330
Melting Completion (Liquidus), °C 1350
1640
Melting Onset (Solidus), °C 1300
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Expansion, µm/m-K 13
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 42
37
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 6.9
36
Embodied Energy, MJ/kg 98
580
Embodied Water, L/kg 250
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 24
43 to 60
Strength to Weight: Bending, points 22
39 to 48
Thermal Shock Resistance, points 18
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.050 to 0.12
0 to 0.080
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 21 to 25
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 45 to 50.4
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4