MakeItFrom.com
Menu (ESC)

N06058 Nickel vs. 2011A Aluminum

N06058 nickel belongs to the nickel alloys classification, while 2011A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06058 nickel and the bottom bar is 2011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 45
6.8 to 16
Fatigue Strength, MPa 350
75 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
26
Shear Strength, MPa 600
190 to 250
Tensile Strength: Ultimate (UTS), MPa 860
310 to 410
Tensile Strength: Yield (Proof), MPa 410
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1540
660
Melting Onset (Solidus), °C 1490
550
Specific Heat Capacity, J/kg-K 420
870
Thermal Conductivity, W/m-K 9.8
130
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.8
3.1
Embodied Carbon, kg CO2/kg material 13
7.9
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 310
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
20 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 370
140 to 670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 27
28 to 37
Strength to Weight: Bending, points 23
33 to 40
Thermal Diffusivity, mm2/s 2.6
49
Thermal Shock Resistance, points 23
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.4
91.5 to 95.1
Bismuth (Bi), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
4.5 to 6.0
Iron (Fe), % 0 to 1.5
0 to 0.5
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 19 to 21
0
Nickel (Ni), % 52.2 to 61
0
Nitrogen (N), % 0.020 to 0.15
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0 to 0.3
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15