MakeItFrom.com
Menu (ESC)

N07716 Nickel vs. 2011A Aluminum

N07716 nickel belongs to the nickel alloys classification, while 2011A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N07716 nickel and the bottom bar is 2011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
6.8 to 16
Fatigue Strength, MPa 690
75 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 580
190 to 250
Tensile Strength: Ultimate (UTS), MPa 860
310 to 410
Tensile Strength: Yield (Proof), MPa 350
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1480
660
Melting Onset (Solidus), °C 1430
550
Specific Heat Capacity, J/kg-K 440
870
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
96

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.5
3.1
Embodied Carbon, kg CO2/kg material 13
7.9
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 280
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
20 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 300
140 to 670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 28
28 to 37
Strength to Weight: Bending, points 24
33 to 40
Thermal Diffusivity, mm2/s 2.8
49
Thermal Shock Resistance, points 24
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.35
91.5 to 95.1
Bismuth (Bi), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
4.5 to 6.0
Iron (Fe), % 0 to 11.3
0 to 0.5
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 7.0 to 9.5
0
Nickel (Ni), % 59 to 63
0
Niobium (Nb), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.0 to 1.6
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15