MakeItFrom.com
Menu (ESC)

N07750 Nickel vs. C61400 Bronze

N07750 nickel belongs to the nickel alloys classification, while C61400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N07750 nickel and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
34 to 40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 770
370 to 380
Tensile Strength: Ultimate (UTS), MPa 1200
540 to 570
Tensile Strength: Yield (Proof), MPa 820
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 960
220
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 460
420
Thermal Conductivity, W/m-K 13
67
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
15

Otherwise Unclassified Properties

Base Metal Price, % relative 60
28
Density, g/cm3 8.4
8.5
Embodied Carbon, kg CO2/kg material 10
3.0
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 260
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
160 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
210 to 310
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 40
18 to 19
Strength to Weight: Bending, points 30
17 to 18
Thermal Diffusivity, mm2/s 3.3
19
Thermal Shock Resistance, points 36
18 to 20

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
6.0 to 8.0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
86 to 92.5
Iron (Fe), % 5.0 to 9.0
1.5 to 3.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 70 to 77.7
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.3 to 2.8
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5